
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 5, MAY 1995 1023

Analysis and Design of a Novel

Noncontacting Waveguide Backshort
Thomas M. Weller, Student Member, IEEE, Linda P. B. Katehi, Senior Member, IEEE,

and William R. McGrath, Member, IEEE

Abstract-A new noncontacting waveguide backshort has re-
cently been developed for millimeter- and submillimeter-wave
frequencies. The design consists of a metal bar with rectangular

holes cut into it, which is covered with a dielectric layer to form

a snug fit with the broadwalls of a waveguide. It is mechanically
rugged and can be readily fabricated for frequencies from 1-1000

GHz. This paper presents a technique for the theoretical char-

acterization of the backshort, using an approach that combines

the mode-matching method and a set of coupled space-domain

integral equations. The convergence characteristics of the analysis

are included, along with a set of general design guidelines.

I. INTRODUCTION

w AVEGUIDES are currently used in a wide variety of

applications covering a frequency range from 1 to over

600 GHz. In addition to the many commercial applications,

NASA needs waveguide components for radiometers operating

up to 1200 GHz for future space missions, and the Department

of Defense is interested in submillimeter-wave communica-

tion systems for frequencies near 1000 GHz. One of the

most frequent uses of the waveguide is as a variable length

transmission line. These lines are used as tuning elements in

more complex circuits, and may be formed by a movable

short circuit, or backshort, in the waveguide. A conventional

approach is to use a contracting backshort where a springy

metallic material, such as beryllium copper, makes dc contact

with the broadwalls of the waveguide. The contacting areas

can degrade, however, due to wear from sliding friction. It is

also extremely difficult to get uniform contact at frequencies

above 300 GHz, where the waveguide dimensions become 0.5

x 0.25 mm for the 300–600 GHz band.

An alternative approach is the noncontacting backshort

shown in Fig. 1. A thin dielectric layer (such as Mylar)

prevents contact with the waveguide broadwalls and allows

the backshort to slide smoothly. In order to produce an RF

short, this backshort has a series of high- and low-impedance

sections which are approximately Ag/4 in lengfi, where A9

is the guide wavelength. The RF impedance of this design is
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Fig. 1. Cross-sectional view of a conventional noncontacting backshort.

given approximately by [1]

()

Zlow n
ZRF = — Zlow

-zhigh
(1)

where ZIOW is the impedance of the thick (low-impedance)

sections, zhi~h is the impedance of the thin (high-impedance)

sections, and n is the number of sections. The thin sections,

however, become difficult to fabricate for frequencies ap-

proaching 100 GHz, and may not even be feasible beyond

300 GHz. It would also be difficult to have the short slide

snugly inside the waveguide at these high frequencies, as the

thin sections would be very weak.

To circumvent these problems, a novel noncontacting back-

short design has recently been developed [2]–[4] which is

suitable for millimeter- and submillimeter-wave operation.

It is a mechanically rugged design which can be readily

fabricated for frequencies from 1–1000 GHz, and is thus

a sound alternative to the miniaturization of conventional

noncontacting shorts. The objectives of this paper are to

discuss the new design and to outline an efficient method

for its theoretical characterization that combines the mode-

matching and integral equation techniques. The analysis has

been used to confirm the experimentally observed performance

and to determine general design guidelines for rectangular-

hole backshorts, as presented in Section V-A. The results

demonstrate that very good performance can be obtained over

a broad bandwidth.

II. NOVEL NONCONTACTING BACKSHORT

In order to obtain a large reflection of RF power, a non-

contacting backshort must produce a series of properly phased

smaller reflections of the incident wave. This is accomplished

in the new design by either rectangular or circular holes, with

the proper dimensions and spacing, cut into a metallic bar (see
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Fig. 2. The new noncontacting backshort design, shown with three rectan-
gular holes. The size, shape, and spacing of these holes are important in

determining the RF properties of the short. S is the spacing, LL is the length,

and L2 is the width of each hole. The front of the backshort is inserted into

the waveguide opening.

Fig. 2). This bar is sized to fit the waveguide cross section and

slide smoothly with a dielectric insulator along the broadwalls

and a small, air-filled gap on each side. The holes replace the

thin-metal, high-impedance sections in the conventional design

shown in Fig. 1, and actually provide a higher impedance

since they extend completely through the bar. Furthermore,

because the electromagnetic fields of the dominant mode are

concentrated near the central axis of the waveguide and tend

to zero at the sidewalls, the holes can be effective in producing

large reflections of RF power, with the gaps along the sidewalls

having a negligible effect. Finally, the new design is easy to

fabricate and can be used at frequencies between 1 and 1000

GHz. For very high frequencies, above 300 GHz, the metallic

bar is a piece of shim stock polished to the correct thickness.

The holes can be formed by drilling, punching, or laser

machining, or they can be etched using lithography techniques.

Alternatively, silicon micromachining methods could be used

for precision fabrication of the backshort. With regard to the

dielectric layer, Mylar and kapton are commercially available

with thicknesses down to 0.0085 mm, which is suitable for

frequencies up to about 600 GHz. Oxide sputtering techniques

or similar approaches could be used to apply even thinner

dielectric layers.

III. THEORETICAL FORMULATION

Fig. 3 represents the cross-sectional view of a backshort

with two holes, inserted a distance d into the end of a

rectangular waveguide. The geometry is symmetric about the

x–z plane, and the sides of the backshort are considered to
be in contact with the sidewalls of the waveguide. Although

sidewall gaps exist in the actual structure, the comparison

between theoretical data and measured results indicates that

the backshort can be accurately modeled using the assumption

of dc contact on the sides. Misalignment of the backshort

within the waveguide will result in the excitation of a coaxial-

like TEM mode, as well as higher order TE or TM modes

[15], which subsequently introduces dropouts in the return
loss. This type of configuration would be difficult to model,

however, and thus provisions for asymmetric positioning of

the backshort have not been included in the analysis. Careful

fabrication, furthermore, can minimize misalignment problems

and mitigate these unwanted effects.

<
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Fig. 3. Cross-sectional schematic diagram (not to scale) of a two-hole

noncontacting backshort, inserted a distance d into the end of a waveguide.

The waveguide broadwalls are on the top and bottom in the figure.

The formulation is based on the decomposition of the

problem into two main components. In the first pm-t, we

compute the scattering matrix [S] at z = O, as depicted in

Fig. 3. From [S], the incident field in Region II, fiinc, is

determined given dominant-mode incidence from Region I

The second step is to solve for the reflection of * due

the presence of the holes. This is accomplished by closing

the hole apertures with ficitious metal surfaces, upon which

equivalent magnetic currents exist to satisfy field continuity

requirements. Using the initial scattering at z = O and the

additional radiation from the magnetic currents, one obtains the

reflection coefficient for the dominant waveguide mode at the

front of the backshort (Z = O). It is noted here that symmetry of

the backshort about the Z–Z plane, which is the plane parallel

to the waveguide broadwalls, has been utilized to reduce the

number of unknowns. Furthermore, only rectangular holes (not

round) have been considered in order to simplify the analysis.

Neither of these points, however, is a necessary restriction in

the formulation.

A. Scattering Matrix at z = O Reference Plane

As [S] represents simply the scattering matrix for a wave-

guide discontinuity, the presence of the holes may be ne-

glected, and thus becomes decoupled from the problem at

hand. The well-documented mode-matching method, which

has been used to solve a variety of waveguide problems [5]-[7]

is applied to determine [S]. With this method, the fields at each

side of the reference plane (z = O) are expanded in infinite

series of orthogonal mode pairs (e.g., TE-to-z and TM-to-z),

and continuity of the tangential electric and magnetic fields

is enforced to determine the scattered field amplitudes. This

results in the following set of equations:

n, m n> m

n, m

cm

+ ‘y(a: + IJ:)3:II (2)
n, m
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n, m

where (2) satisfies continuity of tangential ~ and (3) satisfies

continuity of tangential l?. In the above, a and b represent

the coefficients for waves traveling toward and away from

the reference plane, respectively, and the vector functions @

contain the appropriate constants and x and y dependencies for

the transverse components of the fields. The subscripts e and

m are for TE-to-.z and TM-to-z, while the superscripts denote

the field type (electric or magnetic), as well as the region

to which they pertain (to the left or right of the reference

plane). At, this point, inner products are formed using ~~’1

and d~ 1 with (2), and d~’11 and @~ 11 with (3). Due to

modal orthogonality, this step reduces (2) and (3) to a system

of linear equations. This system is assembled into a matrix

representation and, after inversion, the solution is expressed

as

{b}~ = {a}T[S] (4)

where a and b are coefficient vectors and T denotes the

transpose. Since the incident dominant TEIO mode has even

symmetry about the y = b/2 plane, where b is the height of

the large waveguide, it is necessary to analyze only the upper

or lower half of the circuit.

The presence of a termination at z = d (see Fig. 3) is

accounted for by assigning

bl = alS1l + dS12(1 – rLs22)-lrLS21 (5)

where S’ij are the block submatrices of [S], 1 is the identity

matrix, and [r~] is a matrix which accounts for the reflection at

z = d. As shown in the figure, we assume that the waveguide

opening is terminated in a complex load Z~ for simplification.

This approximation is necessary because the conditions outside

the short are difficult to control experimentally and, likewise,

difficult to characterize analytically. The matrix [l’L] is thus a

diagonal matrix of elements

In (6), Z; and y: are the wave impedance and complex

propagation constant, respectively, for the ith TE/TM mode.
Conductor and dielectric loss may be included in the factor ~~.
An approximate value of ZL can be obtained by considering

the impedance for a very thin aperture opening onto an infinite

ground plane. In many test cases, the use of a normalized load

impedance of ZL w(2.5 + 0.5)+j 1 yielded good agreement

with the measured results. The predicted performance, how-

ever, is nearly independent of Z~ in the frequency bands where

the backshort works well since most of the incident power is

reflected and never reaches the end of the guide.

Fig. 4.

<,.

Signat flow diagram for a backshort with holes.

B. Space Domain Integral Equation

The second step in the formulation is to apply the space

domain integral equation technique to solve the boundary

value problem at the aperture of each of the holes. The

introduction of the equivalent magnetic currents @pPer and

filowe’ (see Fig. 3) allows the hole openings to be closed by

a fictitious metallic surface, and thus transforms the back-

short structure into a combination of a simple rectangular

waveguide, which is the dielectric-filled gap region, and a

series of isolated metallic cavities, which are the holes. These

unknown magnetic currents radiate electromagnetic fields in

the dielectric region, resulting in a modified form of (5). The

new signal flow in Region II is illustrated by the diagram

in Fig. 4. In this figure, all and bll are the coefficients for

the +Z and –z traveling waves in the dielectric-filled gaps,

respectively, and are given by

aII = {a’S12(1 - rLs22)-’rL}
+{(~>rL + ~<)S22(~ – rLs22)-lf’L + i?>rL} (7’)

bll = U1lSZZ = {U1&z(~ – rL&?z)-lrLL%z}

+ {((F>rL + F<)$2(1 – rL&)-lrL

+ F>rL)&z}. (8)

The new expression for (5) is

bl = alSll + alSlz(I – rLSzz)-ll’LSzl

+ {(F>rL + ~<)A922(~ – rLS22)-lrL

+ ~>i’L + ~<}szl (9)

where the vector bl contains the final dominant-mode reflection

coefficient, Sdm, for the backshort. Note that the only unknown

variables in these equations are F< and F>, as the elements

of the matrix [S] and [1’~] have previously been determined.

These unknown components represent the coefficients of the

fields due to the imposed equivalent magnetic currents, and

their derivation is given below.

The solution for the unknown surface currents is uniquely

determined by enforcing continuity of the total tangential fields

across the hole apertures. Continuity of the tangential electric

field is satisfied immediately by setting fi”pper = – I@owe’ =

~. Assuming a backshort with N holes, continuity of the

magnetic field at the kth hole leads to the following space

domain integral equation (SDIE) in the unknown fi
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As mentioned above, flint represents the known incident

magnetic field, which results from scattering of the incoming

wave at the waveguide step discontinuity (the reference plane).

It is expressed in terms of TE and TM modes, the coefficients

@ which are given in the bracketed first terms of (7) and (8).

GB and Gc represent the dyadic Green’s functions for mag-

netic currents in an infinitely long rectangular waveguide and

a metallic cavity, respectively. Closed-form expressions for

these functions can be derived using well-established boundary

value formulations [8]. The use of CB in the dielectric-

filled gap region, which does not directly satisfy the boundary

conditions at x = O, d is possible by considering the fields to

be a superposition of primary and scattered components. The

primary components satisfy bounday conditions at the source,

and radiate away from M assuming an infinite waveguide

exists in either direction. These contributions are represented

by the second term on the right-hand side of (10). The scattered

components are also functions of $, and are required to

satisfy the boundary conditions away from the source at the

discontinuity planes z =0, d. These scattered fields, which are

represented by H‘scat in (10), are summations of TE and TM

modes, and the coefficients for these modes are given in the

second terms in (7) and (8).

The unknowns that have not yet been defined are F<

and F>. These are the coefficients for the fields radiated

by the equivalent magnetic currents, which will be called

the fi fields. It is necessary to write these fields in terms

of summations of TE and TM modes since the scattering

matrix [S] has been generated using a TE/TM representation,

and F<’ > and [S] are directly related through (7)–( 10). The

general form for the fields radiated by ~ is given by

(11)

where <, > is used to differentiate between fields evaluated

to the left or right of the source current locations, respectively.

In the four ~< > variables, the first subscript denotes the field

direction, the second the direction of the source current, and

the third the type of field. The functions e. and h, contain the

position dependence. By noting that TE and TM fields can be
completely described in terms of the H= and E, components,

respectively, it is observed that iWZ will generate only TE

modes, while &fm will generate both TE and TM modes. We

now equate the form of Hz< ~> for each TE mode and E:&

for each TM mode, with the expressions that were used in ‘the

S-matrix formulation:

where a, @ represent the leading modal constants used in

the S-matrix formulation and C1–C3 are proportionality con-

stants which depend on $n. The coefficients F< ~> for the

equivalent TE/TM form of the V fields may now be given as

F
<>>

TE “>+ C;’>= c1 (function of iMZ and &f,)

The final step in the formulation is to solve the coupled set

of integral equations which results from enforcing (10) over all

IV holes. This set is reduced to a system of linear equations by

applying the method of moments (Galerkin’s method) [9], an

approach that has been proven to yield excellent results (see,

for example, [10]–[12]). Using this procedure, the aperture

of each hole is first divided into discrete subsections using a

rectangular grid. The unknown currents are then expanded in

terms of overlapping, piecewise sinusoidal basis functions of

the form

{

sin [k(w’–wn_l)]

sin IWnj if W..l < w’ < Wn
fn(w’) = sin [~(wn+l–w’jl

sin (~tn)
if Wn < w’ < Wn+l

{

1 if wn_l < w’ < Wm+l
#n(w’) = () else (14)

where ~t~ and iW,~ are constant coefficients, (w = x, z), lw

is the length of the nth subsection in the z or z direction,

and k is the wavenumber in the dielectric-filled waveguide
region (used as a scaling parameter). This expansion is inserted

into the integral equation, and inner products are formed using

weighting functions which are identical to the basis functions.

The coupled equations are thereby reduced to a matrix form

which is solved for the unknown current coefficients ~. With

X determined, all elements of (9) may be computed, and the

solution is complete.

As a final note, minor modifications of the formulation

are necessary in order to analyze a backshort with round

holes. The primary difference is with ~c, which becomes the

dyadic Green’s function for a magnetic current inside a finite,

cylindrical cavity. In addition, a staircase approximation to the

hole apertures would be required.



WELLER e?al.: ANALYSIS AND DESIGN OF ANOVEL NONCONTACTING WAVEGUIDE BACKSHORT 1027

-175,

g

Q

:

8
BJ . . 15/.2.

-185. -<
~ ------ 20/).

. . . 2511.

---- 30/).
-190.

5SM 5.23 5.50 5.75 6.CO

FREQUENCY [GHz]

Fig.5. The phase of the backshort reflection coefficient Sdm versus fre-
quency for selected sampling rates. Maximum mode numbers are 800 for the

dielectric region and 900 for the cavity region. The dielectric constant is 2.55.

IV. CONVERGENCE

This section examines the convergence characteristics of the

theoretical formulation. The stability of the numerical solution

has been found to correspond directly with the resonant nature

of the backshort, i.e., the solution converges very quickly

in the frequency ranges where the backshort performs well

(has a high reflection coefficient), but a much larger system

is required in the frequency ranges where the backshort

performance degrades (demonstrates dropouts in the reflection

coefficient). The computation of the scattering matrix [S],

which uses the mode-matching method, requires only a few

modes since the dimensions of the dielectric-filled gaps are

very small. For the geometries investigated in this study, the

solution converged with 15 TE and 6 TM modes included in

each region. The majority of the computational effort involves

the determination of the equivalent magnetic currents via the

moment method. In terms of convergence, the parameters of

interest are the sampling frequency and the maximum mode

numbers, and these are examined below.

The cases studied will consider single-hole backshorts de-

signed to operate from 4 to 6 GHz, which exhibit a dropout in

the return loss of = 2 dB around 5.6 GHz. The convergence

behavior is not strongly affected by the number of backshort

holes, such that the conclusions drawn for the single-hole case

will also apply for multiple-hole backshorts. The phase of the

reflection coefficient Sdm is used as the convergence criterion,

although the magnitude would work equally well.

In the moment method solution, the sampling frequency

refers to the size of the subsections used in the division of

the hole aperture(s), and is measured in terms of the number

of subsections per guide wavelength in the dielectric-filled

regions. From Fig. 5, it is seen that a sampling frequency of

20/Ag provides sufficient accuracy, and convergence of the

phase minimum is obtained. 1 The improvements which could

be gained by a higher sampling rate are outweighed by the
additional computational effort that results from the increased

size of the system.

The maximum mode numbers refer to the number of terms

retained in the dyadic Green’s function expansions, both in

the dielectric-filled regions and in the cavities (i.e., inside

1For a typical three-holebackshort,20/~~ sampling results in approxi-
mately 1000unknowns.

---- SOIY900
-190, !

5.00 52.5 5.50 5.75 6,00
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Fig. 6. The phase of the backshort reflection coefficient Sdm versus fre-
quency for selected mode number pairs. The first number pertains to the

dielectric region, while the second number pertains to the cavity region. The
sampling frequency is 20/Ag. The dielectric constant is 2.4.

the holes). The total number of terms is a product of the

maximum & and y mode numbers, denoted as N. and IVv,

respectively, where the largest eigenvalues are k., max =

~z~/xdim and kv, max = Nu~/ydim. In the dielectric regions,
the convergence has a very weak dependence on NY because

for most geometries ~&~ << ~dirn. An Upper limit Of NY = 10

proved sufficient for all cases considered. The z–y dimensions

of the cavities, however, are generally equivalent, and thus

we take N. = Ny for the cavity functions. The results for

the mode number tests, using a sampling frequency of 20/~g,

are given in Fig. 6. These curves indicate that a total of 350

modes are required in the dielectric region, while only 100 are

needed inside the cavity,

V. NUMERICAL RESULTS

A. Design Guidelines

The theoretical analysis was used to develop a set of

guidelines for the design of the noncontacting backshort with

rectangular holes. Specifically, the goal was to optimize the

performance of a one-hole backshort since multihole designs

typically repeat the geometry of the first hole. It is important

to note that the conclusions drawn here assume symmetric

placement of the backshort within the waveguide, and are thus

based on the best possible performance. In all cases examined,

the waveguide size is 4.78 x 2.22 cm, and the backshort

dimensions are 4.75 x 1.97 cm.

The design guidelines are geared towards two objectives,

namely, maintaining the mechanical strength of the structure

and obtaining an effective RF short over a broad bandwidth.

The first objective is mostly dependent on the hole width and

the backshort height, and with these fixed, the performance ob-

jective becomes a function of proper hole position and length.

The mechanical aspects are very important for submillimeter-

wavc applications since the high-impedance sections of the

backshort can become quite fragile. For this reason, it is

desirable to minimize the hole width and at the same time

provide a large RF reflection. The backshort height, on the

other hand, should be maximized both for mechanical strength

and for RF performance. The effectiveness of the short falls

off quickly for sizes less than 85% of the waveguide height.
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Fig. 7. Calculated reflection coefficient for a one-hole backshort for various
hole sizes. The first number in the legend is the ratio of the hole width to the
total waveguide width (x 1009?.); the second number is the fractional power
calculated from (15). The dielectric constant is 2.4 and the dimensions are
in centimeters.

In the case of a one-hole design, there are three parts of

the backshort which can potentially resonate and degrade the

reflection: between the front of the backshort and the front

edge of the hole, along the length of the hole, and between

the back of the hole and the waveguide opening. The last

two problems can be controlled to a significant degree by

increasing the hole width, and thus a compromise is required

between the mechanical strength and efficient reflection of

power. To look at this quantitatively, consider the percentage

of the power P. which is carried by the dominant TEIO mode

in a portion of the cross section of a waveguide. If this portion

covers the height of the waveguide and XTOof the width, then

P= is given by

sin (7r*
P. =x+

) (percent).
T

(15)

Therefore, a hole which is only 60V0 as wide as the waveguide

presents a discontinuity to 90% of the incident power. With the

hole reflection in proper phase with the reflection at the front

edge of the backshort, 60V0 width is sufficient to obtain a good

balance between mechanical strength and RF performance.

The degradation which results if the hole width is further

decreased is illustrated by the curves in Fig. 7. Clearly, strong

resonances develop when the hole becomes too narrow, and

this problem will not be remedied by additional holes.

The remaining design specifications are the hole position

and length. The hole position refers to the spacing between

the front of the short and the first hole, and also between

successive holes. In the ideal case of alternating low- and

high-impedance sections, this distance should be ~g, d/4 at the

center frequency [1], where Ag, d is the guided wavelength of

the TEIO mode in the dielectric filled gaps, and is given by

‘“d=J%” (16)

In this expression, ~. is the free-space wavelength, ~. is the

dielectric constant, and A is the width of the waveguide.

From different test cases, it was found that electrical lengths

between 65° and 105° at the center frequency provide very

good performance over a 40% bandwidth (testing from 4 to 6
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Fig. 8. Calculated reflection coefficient for a one-hole backshort for various

hole spacings. The legend refers to the electrical length of the spacing S at
the center frequency of 5 GHz. This is based on the wavelength of the TE1 o
mode in the dielectric filled gaps (16). The dielectric constant is 2.4 and the
dimensions are in centimeters.

“2r—————l
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Fig. 9. Calculated reflection coefficient for a one-hole backshort for various

hole lengths. The legend refers to the electrical length of the hole L1 at the
center frequency of 5 GHz. This is based on the wavelength of the TEI o

mode in the dielectric filled gaps (16). The dielectric constant is 2.4 and the
dimensions are in centimeters.

GHz). As shown in Fig. 8, dropouts in the return loss begin

to appear as the spacing goes outside the stated limits. The

optimum hole length, based on ~g, d, falls within the same

65–105° range. In this specification, there maybe a question as

to why the length is based on the wavelength in the dielectric-

filled gaps since the air-filled hole should alter the effective

dielectric constant. The results in Fig. 9, however, show nearly

the same characteristics as those seen in Fig. 8. This indicates

that the ripples in the response are primarily caused by power

which is trapped in the dielectric directly above and to the
sides of the hole. In support of this, numerical tests have shown

that the dropouts which result when the hole length approaches

&, d/2 are reduced as the hole width increases.

An additional design parameter is the dielectric constant

of the material used for the insulator between the back-

short and the waveguide broadwalls. As the electrical size

of the backshort increases with increasing er, more modes

can propagate inside the dielectric-filled gaps and would be

expected to degrade the performance. With the backshort

positioned symmetrically within the waveguide, however, the

higher order modes will not be strongly excited, and most

of the power will still be carried by the dominant mode. To

check this, the design guidelines stated above have been tested
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Fig. 10. Calculated reflection coefficient for a one-hole backshort using

dhTerent dielectric constants. The hole width is 2.85 cm, and the spacing

and length are 90° at 5 GHz, using the wavelength of the TE1o waveguide

mode in the dielectric filled gaps (16).
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Fig. 11. Magnitude of the reflection coefficient Sdm from an asymmetric
E-plane junction, where b is the height of the large waveguide and b’ is the
height of the small waveguide.

using dielectric constants of 2.4, 3.9, and 7.5, and the results

are shown in Fig. 10. Except for differences in the small

ripple across the band, the performance remains essentially

unchanged.

B. Validation of Theory

The validation of the theoretical analysis of a backshort

with holes was conducted by comparison with measured

data. As a preliminary check, however, the calculated results

for the scattering matrix [S] at the waveguide discontinuity

were compared with results found in [13], and the agreement

was very good. In particular, results were compared for the

reflection coefficient from asymmetric (i.e., single-step) E-

phase and H-plane waveguide junctions. Fig. 11 shows the

magnitude of the reflection coefficient \Sdm I versus b’/b for

an asymmetric E-plane junction, using 2blAg = 0.4, where &

is the guide wavelength, b is the height of the large waveguide,

and b’ is the height of the small waveguide.
In order to verify the design guidelines of Section V-A,

a comparison between the performance of a backshort with

and without holes is given in Figs. 12 and 13. For the 8–12

GHz frequency range, the waveguide dimensions are 2.286 x

1.016 cm and the backshort dimensions are 2.278 x 0,942

cm. Thin sheets of Mylar were used as the dielectric material,

providing an effective dielectric constant of approximately 2.2.

PJ
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&

.

FREQUENCY [GHz]

Fig. 12. Measured data showing the magnitude of the reflection coefficient

for two backshorts. The solid line shows the performance for a design with

two rectanguhw holes, sized according to the deeign guidelines. The dashed

line indicates the performance of a back8hort with no holes.
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Fig, 13. Measured data showing the phase of the reflection coefficient for
the same backshorts as in Fig. 12.

The two-hole backshort had holes which were 1.49 cm wide

(65% of the waveguide width) with a length and spacing of

0.566 cm (90° at 10 GHz). The deep dropouts seen in Fig. 12

for the no-hole backshort occur at the resonant frequencies

of the cavity formed in the dielectric-filled region, which is

terminated by the front of the short and the waveguide opening.

These dropouts are eliminated using the two-hole design, and

the reflection coefficient is greater than –O. 17 dB across the

entire band. The phase performance for each backshort is

shown in Fig. 13. The two-hole design has only approximately

8° of phase delay across the band, most of which is due to the

Mylar sheets which are wrapped around the short, forming a

thin dielectric layer on the front face.

VI. CONCLUSION

In summary, we have presented the analysis of a noncon-

tacting waveguide backshort which consists of a metallic bar

with holes cut into it. This new geometry combines high

performance with design simplicity, and thus has the potential

to be easily scaled for applications at high submillimeter-

wave frequencies. Convergence studies on the moment method
solution involved in the theory have shown that a sampling

frequency of 201Ag, with 350 modes in the waveguide regions

and 100 modes in the cavity regions, provides sufficient

accuracy. Furthermore, relatively little computational effort

is required for frequencies at which the backshort performs

well, so preliminary evaluations of potential designs can be

accomplished very efficiently.
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Also included in this paper are basic design guidelines

for rectangular-hole backshorts. The hole widths are required

to be at least 6070 of the total waveguide width, and this

will provide a good balance between mechanical strength

and RF performance for submillimeter-wave applications. The

length and spacing of the holes should have an electrical size

between 65° and 105° at the center frequency, using the guided

wavelength of the TEIO mode in the dielectric-filled gaps.
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