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Analysis and Design of a Novel
Noncontacting Waveguide Backshort

Thomas M. Weller, Student Member, IEEE, Linda P. B. Katehi, Senior Member, IEEE,
and William R. McGrath, Member, IEEE

Abstract—A new noncontacting waveguide backshort has re-
cently been developed for millimeter- and submillimeter-wave
frequencies. The design consists of a metal bar with rectangular
holes cut into it, which is covered with a dielectric layer to form
a snug fit with the broadwalls of a waveguide. It is mechanically
rugged and can be readily fabricated for frequencies from 1-1000
GHz. This paper presents a technique for the theoretical char-
acterization of the backshort, using an approach that combines
the mode-matching method and a set of coupled space-domain
integral equations. The convergence characteristics of the analysis
are included, along with a set of general design guidelines.

I. INTRODUCTION

AVEGUIDES are currently used in a wide variety of
applications covering a frequency range from 1 to over
600 GHz. In addition to the many commercial applications,
NASA needs waveguide components for radiometers operating
up to 1200 GHz for future space missions, and the Department
of Defense is interested in submillimeter-wave communica-
tion systems for frequencies near 1000 GHz. One of the
most frequent uses of the waveguide is as a variable length
transmission line. These lines are used as tuning elements in
more complex circuits, and may be formed by a movable
short circuit, or backshort, in the waveguide. A conventional
approach is to use a contracting backshort where a springy
metallic material, such as beryllium copper, makes dc contact
with. the broadwalls of the waveguide. The contacting areas
can degrade, however, due to wear from sliding friction. It is
also extremely difficult to get uniform contact at frequencies
above 300 GHz, where the waveguide dimensions become 0.5
x 0.25 mm for the 300-600 GHz band.
An alternative approach is the noncontacting backshort
shown in Fig. 1. A thin dielectric layer (such as Mylar)
prevents contact with the waveguide broadwalls and allows

the backshort to slide smoothly. In order to produce an RF °

short, this backshort has a series of high- and low-impedance
sections which are approximately' A /4 in length, where A,
is the guide wavelength. The RF impedance of this design is
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Fig. 1. Cross-sectional view of a conventional noncontacting backshort.

given approximately by [1]
Ziow \ :
Znp = ( ‘ ) Zrow &

Zyigh

where Zjow is the impedance of the thick (low-impedance)
sections, Zy;gh is the impedance of the thin (high-impedance)
sections, and 7 is the number of sections. The thin sections,
however, become difficult to fabricate for frequencies ap-
proaching 100 GHz, and may not even be feasible beyond
300 GHz. It would also be difficult to have the short slide
snugly inside the waveguide at these high frequencies, as the
thin sections would be very weak.

To circimvent these problems, a novel noncontacting back-
short design has recently been developed [2]-[4] which is
suitable for millimeter- and submillimeter-wave operation.
It is a mechanically rugged design which can be readily
fabricated for frequencies from 1-1000 GHz, and is thus
a sound alternative to the miniaturization of conventional
noncontacting shorts. The objectives of this paper are to
discuss the new design and to outline an efficient method
for its theoretical characterization that combines the mode-
matching and integral equation techniques. The analysis has
been used to confirm the experimentally observed performance
and to determine general design guidelines for rectangular-
hole backshorts, as presented in Section V-A. The results
demonstrate that very good performance can be obtained over
a broad bandwidth.

II. NOVEL NONCONTACTING BACKSHORT

In order to obtain a large reflection of RF power, a non-
contacting backshort must produce a series of properly phased
smaller reflections of the incident wave. This is accomplished
in the new design by either rectangular or circular holes, with
the proper dimensions and spacing, cut into a metallic bar (see

0018-9480/95$04.00 © 1995 IEEE
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Fig. 2. The new noncontacting backshort design, shown with three rectan-
gular holes. The size, shape, and spacing of these holes are important in
determining the RF properties of the short. S is the spacing, L; is the length,
and Ly is the width of each hole. The front of the backshort is inserted into
the waveguide opening.

Fig. 2). This bar is sized to fit the waveguide cross section and
slide smoothly with a diclectric insulator along the broadwalls
and a small, air-filled gap on each side. The holes replace the
thin-metal, high-impedance sections in the conventional design
shown in Fig. 1, and actually provide a higher impedance
since they extend completely through the bar. Furthermore,
because the electromagnetic fields of the dominant mode are
concentrated near the central axis of the waveguide and tend
to zero at the sidewalls, the holes can be effective in producing
large reflections of RF power, with the gaps along the sidewalls
having a negligible effect. Finally, the new design is easy to
fabricate and can be used at frequencies between 1 and 1000
GHz. For very high frequencies, above 300 GHz, the metallic
bar is a piece of shim stock polished to the correct thickness.
The holes can be formed by drilling, punching, or laser
machining, or they can be etched using lithography techniques.
Alternatively, silicon micromachining methods could be used
for precision fabrication of the backshort. With regard to the
dielectric layer, Mylar and kapton are commercially available
with thicknesses down to 0.0085 mm, which is suitable for
frequencies up to about 600 GHz. Oxide sputtering techniques
or similar approaches could be used to apply even thinner
dielectric layers.

III. THEORETICAL FORMULATION

Fig. 3 represents the cross-sectional view of a backshort
with two holes, inserted a distance d into the end of a
rectangular waveguide. The geometry is symmetric about the
z—z plane, and the sides of the backshort are considered to
be in contact with the sidewalls of the waveguide. Although
sidewall gaps exist in the actual structure, the comparison
between theoretical data and measured results indicates that
the backshort can be accurately modeled using the assumption
of dc contact on the sides. Misalignment of the backshort
within the waveguide will result in the excitation of a coaxial-
like TEM mode, as well as higher order TE or TM modes
[15], which subsequently introduces dropouts in the return
loss. This type of configuration would be difficult to model,
however, and thus provisjons for asymmetric positioning of
the backshort have not been included in the analysis. Careful
fabrication, furthermore, can minimize misalignment problems
and mitigate these unwanted effects.
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Fig. 3. Cross-sectional schematic diagram (not to scale) of a two-hole
noncontacting backshort, inserted a distance d into the end of a waveguide.
The waveguide broadwalls are on the top and bottom in the figure.

The formulation is based on the decomposition of the
problem into two main components. In the first part, we
compute the scattering matrix [S] at z = 0, as depicted in
Fig. 3. From [S], the incident field in Region II, H'™, is
determined given dominant-mode incidence from Region I
The second step is to solve for the reflection of H™ due
the presence of the holes. This is accomplished by closing
the hole apertures with ficitious metal surfaces, upon which
equivalent magnetic currents exist to satisfy field continuity
requirements. Using the initial scattering at z = 0 and the
additional radiation from the magnetic currents, one obtains the
reflection coefficient for the dominant waveguide mode at the
front of the backshort (z = 0). It is noted here that symmetry of
the backshort about the z—z plane, which is the plane parallel
to the waveguide broadwalls, has been utilized to reduce the
number of unknowns. Furthermore, only rectangular holes (not
round) have been considered in order to simplify the analysis.
Neither of these points, however, is a necessary restriction in
the formulation.

A. Scattering Matrix at z = 0 Reference Plane

As [S] represents simply the scattering matrix for a wave-
guide discontinuity, the presence of the holes may be ne-
glected, and thus becomes decoupled from the problem at
hand. The well-documented mode-matching method, which
has been used to solve a variety of waveguide problems [5]-[7]
is applied to determine [S]. With this method, the fields at each
side of the reference plane (z = 0) are expanded in infinite
series of orthogonal mode pairs (e.g., TE-to-z and TM-to-z),
and continuity of the tangential electric and magnetic fields
is enforced to determine the scattered field amplitudes. This
results in the following set of equations:

> (at + b} <I>EI+Z ol g ]
n,m n, m
:i(an—kbn)(ﬁﬂﬂ
+ > (ap+mdET @
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where (2) satisfies continuity of tangential E and (3) satisfies
continuity of tangential H. In the above, a and b represent
the coefficients for waves traveling toward and away from
the reference plane, respectively, and the vector functions 3
contain the appropriate constants and = and y dependencies for
the transverse components of the fields. The subscripts e and
m are for TE-to-z and TM-to-z, while the superscripts denote
the field type (electric or magnetic), as well as the region
to which they pertain (to the left or right of the reference
plane) At this point, inner products are formed using <I>E I
and 851 with (2), and S I ana G2 I with (3). Due to
- modal orthogonality, this step reduces (2) and (3) to a system
of lincar equations. This system is assembled into a matrix
representation and, after inversion, the solution is expressed
as

{8} = {a}"[5] @)

where ¢ and b are coefficient vectors and T denotes the:

transpose. Since the incident dominant TE;o mode has even
symmetry about the y = b/2 plane, where b is the height of
the large waveguide, it is necessary to -analyze only the upper
or lower half of the circuit.

The presence of a termination at » =
accounted for by assigning

' = o811 4 alS12(I — T S22) T Sa )]

d (see Fig. 3) is

where S;; are the block submatrices of [S], I is the identity
matrix, and [['z] is a matrix which accounts for the reflection at
z = d. As shown in the figure, we assume that the waveguide
opening is terminated in a complex load Z;, for simplification.
This approximation is necessary because the conditions outside
the short are difficult to control experimentally and, likewise,
difficult to characterize analytically. The matrix [I'z] is thus a
diagonal matrix of elements

ZL__ﬁ(;%id

~27.d, 6
ZL+Z; ©®

(T)s,i = = pLe
In (6), Zi and ~. are the wave impedance and complex
propagation constant, respectively, for the sth TE/TM mode.
Conductor and dielectric loss may be included in the factor +2.
An approximate value of Z1, can be obtained by considering
the impedance for a very thin aperture opening onto an infinite
ground plane. In many test cases, the use of a normalized load
impedance of Zp ®(2.5 £ 0.5)+71 yielded good agreement
with the measured results. The predicted performance, how-
ever, is nearly independent of Z, in the frequency bands where
the backshort works well since most of the incident power is
reflected and never reaches the end of the guide.
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Fig. 4. Signal flow diagram for a backshort with holes.

B. Space Domain Integral Equation

The second step in the formulation is to apply the space
domain integral equation technique to solve the boundary
value problem at the aperture of each of the holes. The
1ntroduct10n of the equivalent magnetic currents M©™PT and
M©¥r (see Fig. 3) allows the hole openings to be closed by
a fictitious metallic surface, and thus transforms the back-
short structure into a combination of a simple Tectangular
waveguide, which is the dielectric-filled gap region, and a
series of isolated metallic cavities, which are the holes. These
unknown magnetic currents radiate electromagnetic fields in
the dielectric region, resulting in a modified form of (5). The
new signal flow in Region II is illustrated by the diagram
in Fig. 4. In this figure, o and b are the coefficients for
the +z and —z traveling waves in the dielectric-filled gaps,
respectively, and are given by

I = {a’S12(I =T1S22)'T1}
+{(F>TL + F<)S2(I =T1S85) 'T1 + F°T} (7

b = a'Spy = {alS12(I — T'1Sa2) 'T'1 S92}
+ {((F>T + F<)Sy5(I —T'1S2) T
+ F7T'1)Sas}. ' (®)
The new expression for (5) is
b = alS11 +al812(1 —T'1,892) ' Tr5%
+{(F>Ty + F<)Sa2(I - T'1.S22)7'Ty,
+ F>T'p + F<}8% ®

where the vector b' contains the final dominant-mode reflection
coefficient, Sq,., for the backshort. Note that the only unknown
variables in these equations are F'< and F'~, as the elements
of the matrix [S] and [I'z] have previously been determined.
These unknown components represent the coefficients of the
fields due to the imposed equivalent magnetic currents, and
their derivation is given below.

The solution for the unknown surface currents is uniquely
determined by enforcing continuity of the total tangential fields
across the hole apertures. Continuity of the tangential electric
ﬁeld is satisfied immediately by setting Mupper — _ fjlower —
M. Assuming a backshort with N holes, continuity of the
magnetic field at the kth hole leads to the following space
domain integral equation (SDIE) in the unknown M

N
—ﬁXﬁinC:ﬁX{ﬁscat+Z// dS/aB'Mn
n=1 Sn

+/ ds'ﬁcJ\Zrk}. (10)
Sk
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As mentioned above, H'me represents the known incident
magnetic field, which results from scattering of the incoming
wave at the waveguide step discontinuity (the reference plane).
It is expressed in terms of TE and TM modes, the coefficients
for which are given in the bracketed first terms of (7) and (8).
Gp and G represent the dyadic Green’s functions for mag-
netic currents in an infinitely long rectangular waveguide and
a metallic cavity, respectively. Closed-form expressions for
these functions can be derived using well-established boundary
value formulations [8]. The use of G in the dielectric-
filled gap region, which does not directly satisfy the boundary
conditions at z = 0, d is possible by considering the fields to
be a superposition of primary and scattered components. The
primary components satisfy boundary conditions at the source,
and radiate away from M assuming an infinite waveguide
exists in either direction. These contributions are represented
by the second term on the right-hand side of (10). The scattered
components are also functions of M, and are required to
satisfy the boundary conditions away from the source at the
discontinuity planes z =0, d. These scattered fields, which are
represented by Hseat in (10), are summations of TE and TM
modes, and the coefficients for these modes are given in the
second terms in (7) and (8).

The unknowns that have not yet been defined are F<
and F>. These are the coefficients for the fields radiated
by the equivalent magnetic currents, which will be called
the M fields. It is necessary to write these fields in terms
of summations of TE and TM modes since the scattering
matrix [S] has been generated using a TE/TM representation,
and F'<~ and [S] are directly related through (7)—(10). The
general form for the fields radiated by M is given by

iz -3 wo(2 i) =552

0 8 ]
HS2 = P A VP
Zl/ K (rmrases )i

fz<.r>Hh‘
ES7 =0= f<z s
G (42, 20 S
Z// ds' (weu< T 0202 )G )
(8 M) =157 yh (11)

where <, > is used to differentiate between fields evaluated
to the left or right of the source current locations, respectively.
In the four f<'> variables, the first subscript denotes the field
direction, the second the direction of the source current, and
the third the type of field. The functions e, and h, contain the
position dependence. By noting that TE and TM fields can be
completely described in terms of the H, and E. components,
respectively, it is observed that M, will generate only TE
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modes, while M, will generate both TE and TM modes. We
now equate the form of g> for each TE mode and E5”
for each TM mode, with the expressions that were used in the
S-matrix formulation:

HZ<7’$> :fz x, Hh" "(/1< > hz
f* L uhe = =cy’ " ah,
By =[5 ges = 57 fe.. (12)

where «, § represent the leading modal constants used in
the S-matrix formulation and c1—c3 are proportionality con-
stants which depend on M,. The coefficients F<:> for the
equivalent TE/TM form of the M fields may now be given as

Frp” =cy'” +cy’”  (function of M, and M)
F{ =cs”  (function of M,). (13)

The final step in the formulation is to solve the coupled set
of integral equations which results from enforcing (10) over all
N holes. This set is reduced to a system of linear equations by
applying the method of moments (Galerkin’s method) [9], an
approach that has been proven to yield excellent results (see,
for example, [10]-[12]). Using this procedure, the aperture
of each hole is first divided into discrete subsections using a
rectangular grid. The unknown currents are then expanded in
terms of overlapping, piecewise sinusoidal basis functions of
the form

M Z ZEMrf] T )¢z(z)+ZMZ¢](x )fl( ))

SIN [k(w' —w, _1)]
sin (ki)

$I0 [F(wpiy—w')]
sin (kl,,)

N 1 fw, 1 <w < Wp+1
(w) = {O else

if w, 1 <w < w,
falw') =

if w, < w' < wpaq

(14)

where M and M7, are constant coefficients, (w = =, z), I,
is the length of the nth subsection in the x or z direction,
and & is the wavenumber in the dielectric-filled waveguide
region (used as a scaling parameter). This expansion is inserted
into the integral equation, and inner products are formed using
weighting functions which are identical to the basis functions.
The coupled equations are thereby reduced to a matrix form
which is solved for the unknown current coefficients M. With
M determined, all elements of (9) may be computed, and the
solution is complete.

As a final note, minor modifications of the formulation
are necessary in order to analyze a backshort with round
holes. The primary difference is with G, which becomes the
dyadic Green’s function for a magnetic current inside a finite,
cylindrical cavity. In addition, a staircase approximation to the
hole apertures would be required.
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Fig. 5. The phase of the backshort reflection coefficient Sg,, versus fre-

quency for selected sampling rates. Maximum mode numbers are 800 for the
dielectric region and 900 for the cavity region, The dielectric constant is 2.55.

IV. CONVERGENCE

This section examines the convergence characteristics of the
theoretical formulation. The stability of the numerical solution
has been found to correspond directly with the resonant nature
of the backshort, i.e., the solution converges very quickly
in the frequency ranges where the backshort performs well
(has a high reflection coefficient), but a much larger system
is required in the frequency ranges where the backshort
performance degrades (demonstrates dropouts in the reflection
coefficient). The computation of the scattering matrix [S],
which uses the mode-matching method, requires only a few
modes since the dimensions of the dielectric-filled gaps are
very small. For the geometries investigated in this study, the
solution converged with 15 TE and 6 TM modes included in
each region. The majority of the computational effort involves
the determination of the equivalent magnetic currents via the
moment method. In terms of convergence, the parameters of
‘interest are the sampling frequency and the maximum mode
numbers, and these are examined below.

The cases studied will consider single-hole backshorts de-
signed to operate from 4 to 6 GHz, which exhibit a dropout in
the return loss of & 2 dB around 5.6 GHz. The convergence
behavior is not strongly affected by the number of backshort
holes, such that the conclusions drawn for the single-hole case
will also apply for multiple-hole backshorts. The phase of the
reflection coefficient Sq.,, is used as the convergence criterion,
although the magnitude would work equally well.

In the moment method solution, the sampling frequency
refers to the size of the subsections used in the division of
the hole aperture(s), and is measured in terms of the number
of subsections per guide wavelength in the dielectric-filled
regions. From Fig. 5, it is seen that a sampling frequency of
20/A, provides sufficient accuracy, and convergence of the
phase minimum is obtained.! The improvements which could
be gained by a higher sampling rate are outweighed by the
additional computational effort that results from the increased
size of the system.

The maximum mode numbers refer to the number of terms
retained in the dyadic Green’s function expansions, both in
the dielectric-filled regions and in the cavities (i.e., inside

1For a typical three-hole backshort, 20/A, sampling results in approxi-
mately 1000 unknowns.
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Fig. 6. The phase of the backshort reflection coefficient 'Sy, versus fre-
quency for selected mode number pairs. The first number pertains to the
dielectric region, while the second number pertains to the cavity region. The
sampling frequency is 20/A,4. The dielectric constant is 2.4.

the holes). The total number of terms is a product of the
maximum £ and § mode numbers, denoted as N, and N,
respectively, where the largest eigenvalues are k, max =
N7 /Taim and ky max = NyT/Ydim. In the dielectric regions,
the convergence has a very weak dependence on N, because
for most geometries Yaim <€ ZTdim- An upper limit of N, = 10
proved sufficient for all cases considered. The x—y dimensions
of the cavities, however, are generally equivalent, and thus
we take N, = IV, for the cavity functions. The results for
the mode number tests, using a sampling frequency of 20/A,,
are given in Fig. 6. These curves indicate that a total of 350
modes are required in the dielectric region, while only 100 are
needed inside the cavity.

V. NUMERICAL RESULTS

A. Design Guidelines

The theoretical analysis was used to develop a set of
guidelines for the design of the noncontacting backshort with
rectangular holes. Specifically, the goal was to optimize the
performance of a one-hole backshort since multihole designs
typically repeat the geometry of the first hole. It is important
to note that the conclusions drawn here assume Symmetric
placement of the backshort within the waveguide, and are thus
based on the best possible performance. In all cases examined,
the waveguide size is 4.78 x 2.22 cm, and the backshort
dimensions are 4.75 x 1.97 cm.

The design guidelines are geared towards two objectives,
namely, maintaining the mechanical strength of the structure
and obtaining an effective RF short over a broad bandwidth.
The first objective is mostly dependent on the hole width and
the backshort height, and with these fixed, the performance ob-
jective becomes a function of proper hole position and length.
The mechanical aspects are very important for submillimeter-
wave applications since the high-impedance sections of the
backshort can become quite fragile. For this reason, it is
desirable to minimize the hole width and at the same time
provide a large RF reflection. The backshort height, on the
other hand, should be maximized both for mechanical strength
and for RF performance. The effectiveness of the short falis
off quickly for sizes less than 85% of the waveguide height.
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Fig. 7. Calculated reflection coefficient for a one-hole backshort for various
hole sizes. The first number in the legend is the ratio of the hole width to the
total waveguide width (x 100%); the second number is the fractional power
calculated from (15). The dielectric constant is 2.4 and the dimensions are
in centimeters.

In the case of a one-hole design, there are three parts of
the backshort which can potentially resonate and degrade the
reflection: between the front of the backshort and the front
edge of the hole, along the length of the hole, and between
the back of the hole and the waveguide opening. The last
two problems can be controlled to a significant degree by
increasing the hole width, and thus a compromise is required
between the mechanical strength and efficient reflection of
power. To look at this quantitatively, consider the percentage
of the power P, which is carried by the dominant TE;q mode
in a portion of the cross section of a waveguide. If this portion
covers the height of the waveguide and x% of the width, then
P, is given by
sin (7r L

o)
T

P,=xz+ (percent). (15)

Therefore, a hole which is only 60% as wide as the waveguide
presents a discontinuity to 90% of the incident power. With the
hole reflection in proper phase with the reflection at the front
edge of the backshort, 60% width is sufficient to obtain a good
balance between mechanical strength and RF performance.
The degradation which results if the hole width is further
decreased is illustrated by the curves in Fig. 7. Clearly, strong
resonances develop when the hole becomes too narrow, and
this problem will not be remedied by additional holes.

The remaining design specifications are the hole position
and length. The hole position refers to the spacing between
the front of the short and the first hole, and also between
successive holes. In the ideal case of alternating low- and
high-impedance sections, this distance should be A, 4/4 at the
center frequency [1], where A, 4 is the guided wavelength of
the TE;o mode in the diclectric filled gaps, and is given by

Ao
A \2
e — (3%)
In this expression, Ag is the free-space wavelength, ¢, is the
dielectric constant, and A is the width of the waveguide.
From different test cases, it was found that electrical lengths

between 65° and 105° at the center frequency provide very
good performance over a 40% bandwidth (testing from 4 to 6

Ag,d = (16)
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Fig. 8. Calculated reflection coefficient for a one-hole backshort for various
hole spacings. The legend refers to the electrical length of the spacing S at
the center frequency of 5 GHz. This is based on the wavelength of the TEq
mode in the dielectric filled gaps (16). The dielectric constant is 2.4 and the
dimensions are in centimeters.
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Fig. 9. Calculated reflection coefficient for a one-hole backshort for various
hole lengths. The legend refers to the electrical length of the hole L1 at the
center frequency of 5 GHz. This is based on the wavelength of the TEjq
mode in the dielectric filled gaps (16). The dielectric constant is 2.4 and the
dimensions are in centimeters.

GHz). As shown in Fig. 8, dropouts in the return loss begin
to appear as the spacing goes outside the stated limits. The
optimum hole length, based on A, 4, falls within the same
65-105° range. In this specification, there may be a question as
to why the length is based on the wavelength in the dielectric-
filled gaps since the air-filled hole should alter the effective
dielectric constant. The results in Fig. 9, however, show nearly
the same characteristics as those seen in Fig. 8. This indicates
that the ripples in the response are primarily caused by power
which is trapped in the dielectric directly above and to the
sides of the hole. In support of this, numerijcal tests have shown
that the dropouts which result when the hole length approaches
Ag, a/2 are reduced as the hole width increases.

An additional design parameter is the dielectric constant
of the material used for the insulator between the back-
short and the waveguide broadwalls. As the electrical size
of the backshort increases with increasing ¢, more modes
can propagate inside the dielectric-filled gaps and would be
expected to degrade the performance. With the backshort
positioned symmetrically within the waveguide, however, the
higher order modes will not be strongly excited, and most
of the power will still be carried by the dominant mode. To
check this, the design guidelines stated above have been tested
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Fig. 10. Calculated reflection coefficient for a one-hole backshort using
different dielectric constants. The hole width is 2.85 cm, and the spacing
and length are 90° at 5 GHz, using the wavelength of the TEjo waveguide
mode in the dielectric filled gaps (16). :
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Fig. 11. Magpnitude of the reflection coefficient Sy, from an asymmetric

E-plane junction, where b is the height of the large waveguide and b’ is the
height of the small waveguide.

using dielectric constants of 2.4, 3.9, and 7.5, and the results
are shown in Fig. 10. Except for differences in the small
ripple across the band, the performance remains essentially
unchanged.

B. Validation of Theory

The validation of the theoretical analysis of a backshort
with holes was conducted by comparison with measured
data. As a preliminary check, however, the calculated results
for the scattering matrix [S] at the waveguide discontinuity
were compared with results found in [13], and the agreement
was very good. In particular, results were compared for the
reflection coefficient from asymmetric (i.e., single-step) F-
phase and H-plane waveguide junctions. Fig. 11 shows the
magnitude of the reflection coefficient |Sy,,| versus o' /b for
an asymmetric E-plane junction, using 2b/A, = 0.4, where A,
is the guide wavelength, b is the height of the large waveguide,
and b’ is the height of the small waveguide.

In order to verify the design guidelines of Section V-A,

a comparison between the performance of a backshort with
and without holes is given in Figs. 12 and 13. For the 8-12
GHz frequency range, the waveguide dimensions are 2.286 X
1.016 cm and the backshort dimensions are 2.278 x 0.942
cm. Thin sheets of Mylar were used as the dielectric material,
providing an effective dielectric constant of approximately 2.2.
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Fig. 12.  Measured data showing the magnitude of the reflection coefficient
for two backshorts. The solid line shows the performance for a design with
two rectangular holes, sized according to the design guidelines. The dashed
line indicates the performance of a backshort with no holes.
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Fig. 13. Measured data showing the phase of the reflection coefficient for
the same backshorts as in Fig. 12.

The two-hole backshort had holes which were 1.49 cm wide
(65% of the waveguide width) with a length and spacing of
0.566 cm (90° at 10 GHz). The deep dropouts seen in Fig. 12
for the no-hole backshort occur at the resonant frequencies
of the cavity formed in the dielectric-filled region, which is
terminated by the front of the short and the waveguide opening.
These dropouts are eliminated using the two-hole design, and
the reflection coefficient is greater than —0.17 dB across the
entire band. The phase performance for each backshort is
shown in Fig. 13. The two-hole design has only approximately
8° of phase delay across the band, most of which is due to the
Mylar sheets which are wrapped around the short, forming a
thin dielectric layer on the front face.

VI. CONCLUSION

In summary, we have presented the analysis of a noncon-
tacting waveguide backshort which consists of a metallic bar
with holes cut into it. This new geometry combines high
performance with design simplicity, and thus has the potential
to be easily scaled for applications at high submillimeter-
wave frequencies. Convergence studies on the moment method
solution involved in the theory have shown that a sampling
frequency of 20/}, with 350 modes in the waveguide regions
and 100 modes in the cavity regions, provides sufficient
accuracy. Furthermore, relatively little computational effort

_is required for frequencies at which the backshort performs

well, so preliminary evaluations of potential designs can be
accomplished very efficiently.
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Also included in this paper are basic design guidelines
for rectangular-hole backshorts. The hole widths are required
to be at least 60% of the total waveguide width, and this
will provide a good balance between mechanical strength
and RF performance for submillimeter-wave applications. The
length and spacing of the holes should have an electrical size
between 65° and 105° at the center frequency, using the guided
wavelength of the TE;o mode in the dielectric-filled gaps.
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